The promising potential of the BDMP formalism for security modeling

Ludovic Piètre-Cambacédès
Electricité de France, 2Institut Telecom, Telecom ParisTech, LTCI CNRS
{ludovic.pietre-cambacedes, marc.bouissou}@edf.fr

Abstract

After an overview of the existing cybersecurity graph-based models and their limitations, the paper introduces a new approach that we believe may help overcoming them. It is based on BDMP (Boolean logic driven Markov processes), a powerful formalism initially used in reliability and safety engineering.

1. Introduction

Cybersecurity graph-based models constitute an active domain of research. This can be explained by their ability to formalize reasoning, help quantifying risk reduction and support security decision. The main existing models are presented in section 2; several limitations are still to overcome. In this context, section 3 introduces the idea and the interest of adapting the BDMP formalism [1], a powerful model in the reliability and system safety area, to cybersecurity. Perspectives and future work conclude the paper.

2. State of the art

Graphical attack representations have been manually used by security analysts at least since the 80’s [2]. In the 90’s, while AT&T then Sandia proposed to structure and automate the approach [3], Dacier et al developed privilege graphs [4], a mathematically-formalized model allowing security quantification. End of 90’s, attack trees largely inspired by the fault-trees found in the safety arena, gained a wide popularity with Schneier [5]. Numerous academic and industrial works are still based on them, e.g. [6,7]. In 2002, Sheyner et al published research taking advantage of model-checking [8], opening another very fertile field (e.g. [9]). Petri-nets entered the scene in the same period [10]. Compromise graphs with time-to-compromise metric constitute a recent framework developed by McQueen et al [11].

Classical attack tree models are clear and usable, but do not capture properly the dynamic essence of attacks. This aspect is better modeled by Markov chains or Petri-net based approaches. Unfortunately, those last families do not scale well or rapidly suffer from state-space explosion. Automatically generated graphs are even more susceptible to such limitations, which can be softened in some optimized variants to the expense of their accuracy and representativeness.

3. Towards a new formalism for security

In the same way as fault-trees have been adapted to security, opening new perspectives [5], a more recent safety engineering formalism seems to have promising applications for security modeling.

3.1. BDMP in a nutshell

The general idea of BDMP, as suggested by their name, is to associate a Markov process (which represents the behavior of a component or a subsystem) to each leaf of a fault-tree. This fault-tree is the structure function of the system. The basic Markov processes have two “modes”, corresponding to the fact that the associated components or subsystems are required or in standby. At any time, the choice of the mode of one of the Markov processes depends on the value of a Boolean function of the other processes.

A BDMP (F, r, T, (P_i)) is made of a multi-top coherent fault-tree F, a main top event r of F, a set of triggers T, a set of “triggered Markov processes” P_i associated to the basic events (i.e. the leaves) of F, the definition of two categories of states for the processes P_i (corresponding to working and failure states).

A trigger is represented with a dotted line. It causes a mode change in the P_i associated to all (or part of, if there are other triggers) the leaves of the subtree the trigger points at, when the event at its origin becomes true. For example in Fig. 1, f3 and f4 are events that can take place only after the occurrence of f1 or f2.
3.2. Main interests for security modeling

A first obvious interest lies in their global appearance, close to traditional attack trees, ensuring easy appropriation and readability. But the underlying mechanics of BDMP and associated representation allow a full integration of the dynamic dimension of an attack process, mainly through the use of triggers. If needed, Petri-net leaves can be used when appropriate to model subparts. The overall formalism allows modularity and reusability, respecting the hierarchical structure of traditional attack trees.

Fig. 2 gives a simple example where the attack objective is to log into a Remote Access Server connected to a dial-up modem. The triggers model the sequence in which the tree has to be read and the leaves are activated. Some of them should naturally be developed with more details than in this example. The dynamic behavior would have needed much more graphical elements in a Markov or Petri formalism.

4. Perspectives and future work

This fast abstract has only introduced the potential of BDMP in security modeling. We are currently investigating the implications of such use on their mathematical foundations, and the appropriate adaptations to use security-oriented parameters. This will allow running meaningful simulations and quantifications over a sound graphical model. The integration with the time-to-compromise [4,11] metric is considered. Complete cases and scenarios are also being developed, mainly in the field of industrial control systems cybersecurity. Nevertheless, physical security and systemic view of critical infrastructure protection can also be addressed. Finally, when mature enough, the model will be integrated within the KB3 platform [12], the natural software tool for BDMP.

5. References